
www.manaraa.com

Process-aware web programming with Jolie

Fabrizio Montesi

University of Southern Denmark
Department of Mathematics and Computer Science, Campusvej 55, 5230 Odense M, Denmark.

fmontesi@imada.sdu.dk

Abstract. We present a programming language and runtime, which extends the
Jolie programming language, for the native modelling of process-aware web in-
formation systems, i.e., web information systems based upon the execution of
business processes. Our main contribution is to offer a unifying approach for
the programming of distributed architectures on the web, which can capture web
servers, stateful process execution, and the composition of services via media-
tion in a system. We discuss many examples around these aspects and show how
they can be captured using our approach, covering, e.g., static content serving,
multiparty sessions, and the evolution of web systems.

1 Introduction

A Process-Aware Information System (PAIS) is an information system based upon the
execution of business processes. These systems are required in many application scenar-
ios, from inter-process communication to automated business integration [1]. Processes
are typically expressed as structures that determine the order in which communications
should be performed in a system. These structures can be complex and of different
kinds; a systematic account can be found at [2]. For this reason, many formal meth-
ods [3, 4, 5, 6], tools [7, 8, 9, 10, 11], and standards [12, 13, 14] have been developed to
provide languages for the definition, verification, and execution of processes. In these
works, compositionality plays a key role to make the development of processes manage-
able. For example, in approaches based on process calculi, complex process structures
are obtained by composing simpler ones through the usage of standard composition op-
erators such as sequence, choice, and parallel (see, e.g., [15]). Other approaches follow
similar ideas using graphical formal models, e.g., Petri Nets [16, 17].

In the last two decades, web applications have become increasingly process-aware.
Web processes – i.e., processes inside of a web information system – are usually im-
plemented server-side on top of sessions, which track incoming messages related to the
same conversation. Sessions are supported by a shared memory space that lives through
different client invocations. Differently from the aforementioned approaches for design-
ing processes, the major languages and platforms for developing web applications (e.g.,
PHP, Ruby on Rails, and Java EE) do not support the explicit programming of process
structures. As a workaround, programmers have to simulate processes using bookkeep-
ing variables in the shared memory space of sessions. For example, consider a process
in a Research Information Service (RIS) where a user has to authenticate through a
login operation before accessing another operation, say addPub, for registering a

ar
X

iv
:1

41
0.

37
12

v2
 [

cs
.D

C
]

 1
5

O
ct

 2
01

4

www.manaraa.com

publication. This would be implemented by defining the login and the addPub op-
erations separately. The code for login would update a bookkeeping variable in the
session state and the implementation for addPub would check that variable when it is
invoked by the user. Although this approach is widely adopted, it is also error-prone:
since processes can assume quite complex structures, simulating them through book-
keeping variables soon becomes cumbersome. Consequently, the produced code may
be poorly readable and hard to maintain.

The limitations described above can be avoided by adopting a multi-layered archi-
tecture. For example, it is possible to stratify an application by employing: a web server
technology (e.g., Apache Tomcat) for serving content to web browsers; a web scripting
language (e.g., PHP) for programmable request processing; a process-oriented language
(e.g., WS-BPEL [12]) for modelling the application processes; and, finally, mediation
technologies such as proxies and ESB [18] for integrating the web application within
larger systems. Such an architecture would offer a good separation of concerns. How-
ever, the resulting system would be highly heterogeneous, requiring a specific know-
how for handling each part. Thus, it would be hard to maintain and potentially prone to
breakage in case of modifications.

The aim of this paper is to simplify the programming of process-aware web infor-
mation systems. We present a programming framework, consisting of a language and
its runtime, that successfully captures the different components of such systems (web
servers, processes, . . .) and their integration using a homogeneous set of concepts. We
build our results on top of Jolie, a general-purpose service-oriented programming lan-
guage that can handle both the structured modelling of processes and their integration
within larger distributed systems [11, 19]. We briefly introduce Jolie in § 2.

1.1 Contributions

Our main contribution is to obtain a unifying technology for the programming of pro-
cesses, web technologies (web servers and scripting), and mediation services (e.g.,
proxies). We proceed as described below.

Web processes. We extend the Jolie language to support the HTTP protocol, enabling
processes written in Jolie to send and receive HTTP messages (§ 3). The integration
is seamless, meaning that the processes defined in Jolie remain abstract from the un-
derlying HTTP mechanisms and data formats: data structures in Jolie are transparently
transformed to HTTP messages and vice versa (§ 3.1). These transformations can be
configured using parameters that allow developers to map information in HTTP head-
ers, e.g., cookies, to application data (§ 3.3).

Web servers as processes. We develop a web server, called Leonardo (§ 4), using our
approach. The web server is given as a simple process that (i) receives the name of the
resource a client wants to access, then (ii) reads the content of such resource, and (iii)
sends the content back to the client. Leonardo is an example of the fact that, in our
framework, a web server is not a separate technology but it is instead a simple case of
a process. We also show how to extend Leonardo to handle simple CRUD operations
over HTTP.

2

www.manaraa.com

Sessions. We combine our HTTP extension for Jolie with message correlation, a mech-
anism used in service-oriented technologies to route incoming messages to their respec-
tive processes running inside of a service [12, 11]. We first show that this combination
is adequate wrt existing practice: it enables Jolie processes to use the standard method-
ology of tracking client-server web sessions using unique session identifiers (§ 5.1).
Then, we generalise such methodology to program multiparty sessions, i.e., structured
conversations among a process and multiple external participants [20] (§ 5.2).

Architectural programming. We present how to obtain separation of concerns in a web
architecture implemented with our approach, by combining HTTP with aggregation, a
Jolie primitive for programming the structure of service networks [21, 22, 11] (§ 6). We
demonstrate the usefulness of this combination by implementing a multi-layered system
that integrates different components. We also discuss how to deal with the evolution of
software architectures obtained with our approach (§ 6.2).

2 Overview of Jolie

Jolie [23] is a general-purpose service-oriented programming language, released as an
open-source project [19] and formally specified as a process calculus [4, 24]. In this
section, we briefly describe some aspects of Jolie that are relevant for our discussion.
We refer the interested reader to [11] and [19] for a more comprehensive presentation
of the language. Readers who are already familiar with the Jolie language may skip this
section and resume reading from § 3.

2.1 Jolie programs

Every Jolie program defines a service and consists of two parts: behaviour and deploy-
ment. A behaviour defines the implementation of the operations offered by the service;
it consists of communication and computation instructions, composed into a structured
process (a workflow) using constructs such as sequences, parallels, and internal/external
choices. Behaviours rely on communication ports to perform communications, which
are to be defined in the deployment part. The latter can also make use of architectural
primitives for handling the structure of an information system. Formally, a Jolie pro-
gram is structured as:

D main { B }

Above, D represents the deployment and B the behavior of the program.

2.2 Behaviour

We report (a selection of) the syntax of behaviours in Figure 1. A behaviour B can
use primitives for performing communications, computation, and their composition in
processes. We briefly comment the syntax. Terms (input), (output), and (input choice)
implement communications. An input η can either be a one-way or a request-response,

3

www.manaraa.com

B ::= η (input)
| η (output)
| [η1] { B1 } . . .[ηn] { Bn } (input choice)
| if(e) B1 else B2 (cond)
| while(e) B (while)
| B ; B′ (seq)
| B | B′ (par)
| throw(f) (throw)
| x = e (assign)
| x -> y (alias)
| nullProcess (inact)

η ::= o(x) (one-way)
| o(x)(e){ B } (request-response)

η ::= o@OP(e) (notification)
| o@OP(e)(y) (solicit-response)

Fig. 1: Jolie, syntax of behaviours (selection).

following the WSDL standard [25]. Statement (one-way) receives a message for opera-
tion o and stores its content in variable x. Term (request-response) receives a message
for operation o in variable x, executes behaviour B (called the body of the request-
response input), and then sends the value of the evaluation of expression e to the invoker.
Dual to input statements, an output η can be a (notification) or a (solicit-response). A
(notification) sends a message to OP containing the value of the evaluation of expres-
sion e. Term (solicit-response) sends a message to OP containing the evaluation of e
and then waits for a response from the invoked service, storing it afterwards in variable
y. In both (notification) and (solicit-response), OP is the name of an output port, which
acts as a reference to an external service. Output ports are concretely defined in the
deployment part of a program; we will present them in § 2.3.

Term (input choice) implements an input-guarded choice; it is similar to the pick
primitive in WS-BPEL [12]. Specifically, the construct waits for a message for any of
the inputs in η1, . . . , ηn. When a message for one of these inputs is received, say for ηi
where 1 ≤ i ≤ n, then the statement is executed as follows, in order: (i) all the other
branches in the choice (i.e., all the [ηj] { Bj } such that j 6= i) are discarded; (ii) ηi
is executed; and, finally, Bi is executed.

Terms (cond) and (while) implement, respectively, the standard conditional and iter-
ation constructs. Term (seq) models sequential execution and reads as: execute B, wait
for its termination, and then run B′. In term (par), instead, B and B′ are run in parallel.
Term (throw) throws a fault signal f, interrupting execution. If a fault signal is thrown
from inside a request-response body, the invoker of the request-response statement is
automatically notified of the fault [26]. We omit the syntax for handling faults, which
is not necessary for reading this paper.

4

www.manaraa.com

Term (assign) stores the result of the evaluation of expression e in variable x. Term
(alias) makes variable x an alias for variable y, i.e., after its execution accessing x will
be equivalent to accessing y. Term (inact) denotes the empty behaviour (no-op).

Example 1 (Structured data). Jolie natively supports the manipulation of structured
data. In Jolie’s memory model the program state is a tree (possibly with arrays as nodes,
see [21]), and every variable, say x, can be a path to a node in the memory tree. Paths
are constructed through the dot “.” operator; for instance, the following sequence of
assignments

person.name = "John"; person.age = 42

would lead to a state containing a tree with root label person. For the reader familiar
with XML, a corresponding XML representation would be:

<person> <name>John</name> <age>42</age> </person>

2.3 Deployment

We introduce now (a selection of) the syntax of deployments. A deployment includes
definitions of input ports, denoted by IP , and output ports, denoted by OP , which
respectively support input and output communications with other services. Input and
output ports are one the dual concept of the other, and their respective syntaxes are
quite similar. Both kinds of ports are based on the three basic elements of location,
protocol and interface. Their syntax is reported in Figure 2. In the syntax of ports, i.e.,

IP ::= inputPort Port OP ::= outputPort Port

Port ::= id {
Location: Loc
Protocol: Proto
Interfaces: iface1, . . . , ifacen

}

Fig. 2: Jolie, syntax of ports (selection).

term Port, Loc is a URI (Uniform Resource Identifier) that defines the location of
the port; Proto is an identifier referring to the data protocol to use in the port, which
specifies how input or output messages through the port should be respectively decoded
or encoded; the identifiers iface1, . . . , ifacen are references to the interfaces accessible
through the port.

Jolie supports several kinds of locations and protocols. For instance, a valid Loc for
accepting TCP/IP connections on TCP port 8000 would be "socket://localhost:8000".
Other supported locations are based, respectively, on Unix sockets, Bluetooth commu-
nication channels, and local in-memory channels (channels implemented using shared

5

www.manaraa.com

memory). Some supported instances of Proto are sodep [19] (a binary protocol, op-
timised for performance), soap [27], and xmlrpc [28].

The interfaces referred to by a communication port define the operations that can be
accessed through that port. Each interface defines a set of operations, along with their
respective (i) operation types, defining if an operation is to be used as a one-way or a
request-response, and (ii) types of carried messages. For example, the following code

interface SumIface { RequestResponse: sum(SumT)(int) }

defines an interface named SumIface with a request-response operation, called sum,
that expects input messages of type SumT and replies with messages of type int (inte-
gers). Data types for messages follow a tree-like structure; for example, we could define
SumT as follows:

type SumT:void { .x:int .y:int }

We read the code above as: a message of type SumT is a tree with an empty root node
(void) and two subnodes, x and y, that have both type int.

Example 2 (A complete Jolie program). We give an example of how to combine be-
haviour and deployment definitions, by showing a simple service defined in Jolie. The
code follows:

type SumT:void { .x:int .y:int }

interface SumIface { RequestResponse: sum(SumT)(int) }

inputPort SumInput {
Location: "socket://localhost:8000"
Protocol: soap
Interfaces: SumIface
}

main
{

sum(req)(resp) {
resp = req.x + req.y

}
}

Above, input port MyInput deploys the interface SumIface (and thus the sum oper-
ation) on TCP port 8000, waiting for TCP/IP socket connections by invokers using the
soap protocol. The behaviour of the service is contained in the main procedure, the
entry point of execution in Jolie. The behaviour in main defines a request-response in-
put on operation sum. In this paper, we implicitly assume that all services are deployed
with the concurrent execution modality for supporting multiple session executions,
from [21]. This means that whenever the first input of the behavioural definition of a
service receives a message from the network, Jolie will spawn a dedicated process with

6

www.manaraa.com

a local memory state to execute the rest of the behaviour. This process will be equipped
with a local variable state and will proceed in parallel to all the others. Therefore, in
our example, whenever our service receives a request for operation sum it will spawn
a new parallel process instance. The latter will enter into the body of sum, assign to
variable resp the result of adding the subnodes x and y of the request message req,
and finally send back this result to the original invoker. ut

3 Extending Jolie to HTTP

We extend Jolie to support web applications by introducing a new protocol for com-
munication ports, named http, and by extending the language of deployments to sup-
port configuration parameters for protocols. The protocol follows the specifications of
HTTP, and integrates the message semantics of Jolie to that of HTTP and its different
content encodings. In this section, we discuss the main aspects of our implementation.

3.1 Message transformation

The central issue to address for integrating Jolie with the HTTP protocol is establishing
how to transform HTTP messages in messages for the input and output primitives of
Jolie and vice versa. Hereby we discuss primarily how our implementation manages
request messages; response messages are similarly handled. The (abstract) structure of
a request message in HTTP is:

Method Resource HTTP/V ersion Headers Body

Above,Method specifies the action that the client intends to perform and can be picked
by a static set of keywords, such as GET, PUT, POST, etc. TermResource is a URI path
telling which resource the client is requesting. Term V ersion is the HTTP protocol
version of the message. The term Headers may include descriptive information on
the message Body, e.g., the type of its content (Content-Type), or parameters that
influence the behaviour of the receiver, e.g., the wish to keep the underlying connection
open for future requests (Connection:keep-alive). Finally, Body contains the
content (payload) of the HTTP message.

A Jolie message consists of an operation name (the operation the message is meant
for) and a structured value (the content of the message) [21]. Hence, we need to establish
where to read or write these elements in an HTTP message. For operation names, we
interpret the path part of the Resource URI as the operation name1. The Method of an
HTTP message, instead, is read and written by Jolie programs through a configuration
parameter of our extension, described later in § 3.3. The value of a Jolie message is

1 The reader familiar with HTTP and the bridging of the RPC and REST paradigms may ask
why we did not choose Method instead of Resource to read/write operation names. The
reason is generality: operation names are picked by the programmer from an infinite set of
identifiers, whereas Method can only be picked from the static set of methods defined in the
specifications of HTTP. Therefore, choosing Method would mean that some Jolie programs
could not be ported to HTTP without requiring to change the names of the operations they use.

7

www.manaraa.com

obtained from Body and the rest of the Resource URI (query and fragment parts). We
use the latter to decode querystring parameters as Jolie values.

The content of an HTTP message may be encoded in one of different formats. Our
http extension handles querystrings, form encodings (simple and multipart), XML,
JSON [29], and GWT-RPC2 [30]. Programmers can use the format parameter (§ 3.3)
to control the data format for encoding and decoding messages. Most of the times,
however, this decision is performed automatically and the programmer does not need to
know which format is used. For example, for incoming request messages from clients,
if the Content-Type HTTP header is present then it is used to auto-detect the data
format of Body; by default, the http protocol will use the same data format to encode
the reply for the respective client. As an example of message translation, the HTTP
message:

GET /sum?x=2&y=3 HTTP/1.1

would be interpreted as a Jolie message for operation sum. The querystring x=2&y=3
would be translated to a structured value with subnodes x and y, containing respectively
the strings "2" and "3".

3.2 Automatic type casting

Querystrings and other common message formats used in web applications, such as
HTML form encodings, do not carry type information. Instead, they carry only string
representations of values; the information on the types that these values may have had
in the code of the sender (e.g., in Javascript) is therefore lost. However, type informa-
tion is necessary for supporting services such as the sum service in Example 2, which
specifically requires its input values to be integers. To handle such cases, we introduce
the mechanism of automatic type casting. Automatic type casting reads incoming mes-
sages that do not carry type information (such as querystrings or HTML forms) and
tries to cast their content values to the types expected by the service interface for the
message operation. As an example, consider the querystring x=2&y=3 that we dis-
cussed before. Since its HTTP message is a request for operation sum, the automatic
type casting mechanism would retrieve the typing for the operation and see that nodes
x and y should have type int. Therefore, it would try to re-interpret the strings "2"
and "3" as integers before giving the message to the behaviour of the Jolie program.
There are cases that type casting may fail to handle; for example, in x=hello the
string hello cannot be cast to an integer for x. In such cases, our http protocol will
send a TypeMismatch fault back to the invoker.

3.3 Configuration Parameters

We augment the deployment syntax of Jolie to support configuration parameters for
our http protocol. Specifically, these can be accessed through (assign) and (alias)

2 We have also developed a companion GWT-RPC client library, called jolie-gwt, for a
more convenient access to web services written in Jolie by integrating with the standard GWT
development tools.

8

www.manaraa.com

statements that can be written inside a code block immediately after declaring the http
protocol in a port. For instance, consider the following input port definition:

inputPort MyInput {
/ * . . . * /
Protocol: http {

.default = "d"; .debug = true;

.method -> m
}

}

The code above would set the default parameter to "d", set the debug parameter
to true, and bind the method parameter to the value of variable m in the current Jolie
process instance.

We briefly describe some configuration parameters. All of them can be modified at
runtime using the standard Jolie constructs for dynamic port binding, from [21], which
we omit here. Parameter default allows to mark an operation as a special fallback
operation for receiving messages that cannot be handled by any other operation de-
fined in the interface of the enclosing input port. Parameter cookies allows to store
and retrieve data from browser cookies, by mapping cookie values in HTTP messages
to subnodes in Jolie messages. Parameter method allows to read/write the Method
field of HTTP messages. Parameter format can be used to force the data format of
HTTP messages, such as json (for JSON), or xml (for XML). The parameter alias
allows to map values inside a Jolie message to resource paths in the HTTP message,
to support interactions with REST services. Parameter redirect gives access to the
Location header in HTTP, allowing to redirect clients to other locations. The param-
eter cacheControl allows to send directives to the client on how the responses sent
to it should be cached. Finally, parameter debug allows to print the HTTP messages
sent and received through the network on screen.

3.4 Examples

We report some examples about how our http protocol implementation integrates with
some standard mechanisms of web technologies.

Example 3 (Access from web browsers). Let us consider a modification of the sum ser-
vice from Example 2, where we change the input port to use the http protocol that we
developed:

type SumT:void { .x:int .y:int }

interface SumIface { RequestResponse: sum(SumT)(int) }

inputPort SumInput {
Location: "socket://localhost:8000"
Protocol: http
Interfaces: SumIface

9

www.manaraa.com

}

main
{

sum(req)(resp) {
resp = req.x + req.y

}
}

Now, our implementation of http allows us to access the service above in multiple
ways. The most obvious is to write a Jolie client using an output port with the http
protocol. A more interesting way is to use a web browser. For example, we can use the
service by passing parameters through a querystring; navigating to the following URL
is valid:

http://localhost:8000/sum?x=2&y=3

Accessing the URL above would show the following content on the browser:

<sumResponse>5</sumResponse>

The standard format used for responses is XML, as above. Responses from Jolie ser-
vices using http can of course also be themed using, e.g., HTML and Javascript (we
refer to the online documentation for more information about this aspect [19]).

Another possibility is to use HTML forms, such as the one that follows:

<form action="sum" method="GET">
<input type="text" name="x"/>
<input type="text" name="y"/>
<input type="submit"/>

</form>

The content displayed as a response in the web browser would be the same XML doc-
ument as before.

We also offer support for AJAX programming. The following Javascript snippet
calls the sum operation using jQuery [31]: first, it reads the values for x and y from
two text fields (respectively identified in the DOM by the names x and y); then, it sends
their values to the Jolie service by encoding them as a JSON structure; and, finally, it
displays the response from the server in the DOM element with id result:

$.ajax(
’sum’, { x: $(’#x’).val(), y: $(’#y’).val() },
function(response) { $("#result").html(response); }

);

Our implementation of the http protocol for Jolie auto-detects the format of mes-
sages sent by clients, so the sum service does not need to distinguish among all the
different access methods shown above: they are all handled using the same Jolie code.

10

http://localhost:8000/sum?x=2&y=3

www.manaraa.com

Example 4 (Accessing REST services). We exemplify how to access REST services,
where resources are identified by URLs, using our configuration parameters. In this ex-
ample we invoke the DBLP server, which provides bibliographic information on com-
puter science articles [32]. We use DBLP to retrieve the BibTeX entry of an article,
given the dblp key of the latter (i.e., the identifier of such article in dblp). The code
follows:

include "console.iol"

type FetchBib:void { .dblpKey:string }

interface DBLPIface {
RequestResponse: fetchBib(FetchBib)(string)
}

outputPort DBLP {
Location: "socket://dblp.uni-trier.de:80/"
Protocol: http {

.osc.fetchBib.alias = "rec/bib2/%!{dblpKey}.bib";

.method = "html" }
Interfaces: DBLPIface
}

main
{

r.dblpKey = args[0];
fetchBib@DBLP(r)(bibtex);
println@Console(bibtex)()

}

In the example above, we start by importing the Console service from the Jolie stan-
dard library. We then declare an output port towards the DBLP server. The interest-
ing part here is the usage of parameter osc.fetchBib.alias, which passes to
our implementation a configuration for parameter alias that is specific to operation
fetchBib (osc stands for operation specific configuration). The value of the alias for
operation fetchBib specifies how to map calls for that operation to resource paths
that the DBLP server understands. The interface offered by DBLP for retrieving bibtex
entries is REST-based, with paths rooted at “rec/bib2/”. As an example, assume that we
wanted to retrieve the bibtex entry for the famous book on the C language by Kernighan
and Ritchie [33]. Its dblp key is “books/ph/KernighanR78”; therefore, the bibtex entry
can be accessed at the URL:

http://dblp.uni-trier.de/rec/bib2/books/ph/KernighanR78.bib

In our implementation, we capture this kind of patterns for REST paths by providing
a syntax for replacing parts of paths with the value of a subnode in a request message.
For instance, the term %!{dblpKey} in the alias for operation fetchBib means

11

www.manaraa.com

that that part of the path will be replaced with value of the sub node dblpKey in
messages sent for that operation on port DBLP. The behaviour of the service is simple:
we invoke operation fetchBib reading the dblp key we want from the first command
line argument that Jolie is invoked with; then, we print the received bibtex entry on
screen.

An extended version of this example is deployed as a tool at [34].

4 Web Servers

In Example 3 we have seen how to make operations in a Jolie service accessible by
invokers using HTTP (in the example, operation sum): any operation in a Jolie service
can be exposed to HTTP clients just by changing the protocol of its related input port(s)
to http. This technique covers scenarios in which the interface that we want to expose
over HTTP is statically defined as a finite set of operations, which is the typical situation
when using service-oriented technologies such as Jolie or WS-BPEL [12]. However,
web servers do not fall into this category. A web server allows clients to access files,
e.g., web pages, images, and JavaScript libraries. Since files can be created and deleted
during execution, we cannot statically map each single file to an operation name as
would be required by our methodology in § 3. In this section, we discuss how to deal
with this kind of situations by introducing default operations.

Default operations bridge the mutating nature of dynamic resource sets that web
servers have to offer (such as parts of a filesystem) to the static operation names used in
processes. Specifically, a default operation is a special operation marked as a fallback
in case a client sends a request message for an operation that is not statically defined
by the service. In this case, the message is wrapped in the following data structure (we
omit some subnodes not relevant for this discussion):

type DefaultOperationHttpRequest:void {
.operation:string
.data:undefined

}

where operation is the name of the operation (or of the resource) that has been
requested by the client and data is the data content of the message.

A default operation is set through the parameter default of the http protocol,
and can either be associated to the Method field of incoming HTTP messages or be
defined as a “catch-all” operation in case no other more specific operation can be found.
For example, the following configuration states that requests for undefined operations
with HTTP method PUT should be handled by operation put, requests for undefined
operations with method GET should be handled by operation get, and all other requests
for undefined operations should be handled by operation d.

Protocol: http {
.default = "d";
.default.get = "get";
.default.put = "put"

12

www.manaraa.com

}

Example 5 (Leonardo Web Server). Parameter default allows us to model a simple
web server easily: whenever we receive a request for the default operation, we try to find
a file in the local filesystem that has the same name as the operation originally requested
by the client. We have used this mechanism to implement Leonardo [35], a web server
implementation written in pure Jolie. For clarity, here we report a simplified version.
The entire implementation of Leonardo consists of only about 80 LOCs, showing that
our language pushes many of the details of dealing with HTTP to the underlying im-
plementation; many of these details can be accessed through configuration parameters
when needed. Leonardo can be downloaded at [35].

/ * . . . * /

interface MyInterface {
RequestResponse:

d(DefaultOperationHttpRequest)(undefined)
}

inputPort HTTPInput {
Location: "socket://localhost:80/"
Protocol: http { .default = "d" / * . . . * / }
Interfaces: MyInterface
}

main {
d(req)(resp) {

/ * . . . * /
readFile@File(req.operation)(resp)

}
}

Above, we have set the default parameter for the http protocol in input port
HTTPInput to operation d. Therefore, when a message for an unhandled operation
is received through input port HTTPInput, it will be managed by the implementa-
tion of operation d. The body of the latter invokes operation readFile of the File
service from the Jolie standard library, which reads the file with the same name as the
originally request operation (req.operation). Finally, the data read from the file
(resp) is returned back to the client.

Example 6 (CRUD Web Servers). We extend Leonardo to a simple web server support-
ing CRUD operations (Create, Read, Update, Delete). As usual, we map create and
update to PUT requests, read to GET, and delete to DELETE. The code follows:

/ * . . . * /

interface MyInterface {

13

www.manaraa.com

RequestResponse:
get(DefaultOperationHttpRequest)(undefined)
put(DefaultOperationHttpRequest)(void)
delete(DefaultOperationHttpRequest)(bool)

}

inputPort HTTPInput {
Location: "socket://localhost:80/"
Protocol: http {

.default.get = "get";

.default.put = "put";

.default.delete = "delete"
}
Interfaces: MyInterface
}

main {
[get(req)(resp) {

readFile@File(req.operation)(resp)
}] { nullProcess }

[put(req)() {
f.filename = req.operation;
f.content -> req.data;
writeFile@File(f)(resp)

}] { nullProcess }

[delete(req)(resp) {
delete@File(req.operation)(resp)

}] { nullProcess }
}

In the code above, GET requests are served by operation get, which reads the requested
file and replies with its content. Similarly, operation put uses the Jolie standard library
to write a file with the data sent by the invoker, and operation delete deletes a file
from the filesystem.

5 Sessions

A main aspect of web-based information systems is the modelling of sessions, which
allow to relate different incoming messages to the same logical “conversation”. In this
section, we present how to program sessions over HTTP with our extension of the
Jolie language. A major benefit is that sessions are process-aware: the order in which
messages are sent and received over different operations is syntactically explicit, and it
is enforced without requiring bookkeeping variables.

14

www.manaraa.com

5.1 Binary sessions

We start by addressing binary sessions, i.e., sessions with exactly two participants [36].
Consider the scenario mentioned in the Introduction about a Research Information Ser-
vice (RIS), where the RIS allows users to add a publication to a repository after having
successfully logged in. This structure is expressed by the following behaviour:

login(cred)(r) { checkCredentials };
addPub(pub)

Above, login is a request-response operation that, when invoked, checks the received
credentials by calling the subprocedure checkCredentials. If the latter does not
throw a fault, the process proceeds by making operation addPub available.

Suppose now that, e.g., two users are logged in at the same time in a service with
the behaviour above. The service would have then two separate process instances, re-
spectively dedicated to handle the two clients. When a message for operation addPub
arrives in this situation, how can we know if it is from the first user or the second? We
address this kind of issues by using correlation sets, as defined in [24]. A correlation
set declares special variables that identify an internal service process from the others.
In our example we use the following correlation set declaration:

cset { userKey: addPub.userKey }

Above, we used the cset keyword to declare a correlation set consisting of variable
userKey. We will use userKey to distinguish users that have logged in. Variable
userKey is associated to the subnode userKey in incoming messages for operation
addPub. This means that whenever a message for operation addPub is received from
the network, Jolie will assign the message to the internal running process with the same
value for the correlation variable userKey. We can now write a working implementa-
tion of the service:

inputPort RISInput {
/ * . . . * /
Protocol: http
}

cset { userKey: addPub.userKey }

define checkCredentials { / * . . . * / }
define updateDB { / * . . . * / }

main
{

login(cred)(r) {
checkCredentials;
r.userKey = csets.userKey = new

};
addPub(pub);

15

www.manaraa.com

updateDB
}

Our RIS allows the creation of new processes by invoking operation login. If the
procedure checkCredentials does not throw a fault, then the process creates a
fresh value for the correlation variable csets.userKey using the new keyword.
The process sends the value of csets.userKey back to the client through variable r.
Then, the process waits for an invocation of operation addPub and stores the incoming
message in variable pub. The correlation set declaration in the program guarantees
that only invocations with the same user key as that returned by operation login will
be given to this process. We finally update the internal database of the RIS using the
(unspecified) procedure updateDB.

Integrating cookies with correlation sets Our implementation of the RIS requires
clients to write the userKey as a subnode in the messages they send to operation
addPub. Since this may be cumbersome in the case of many operations that require
correlation, web applications typically use HTTP cookies to store this kind of infor-
mation. Our http protocol integrates cookies with message correlation through the
cookies parameter, which allows to map cookies to subnodes in Jolie variables. We
change the definition of input port RISInput to the following:

inputPort RISInput {
/ * . . . * /
Protocol: http { .cookies.userKeyCookie = "userKey" }
}

The parameter assignment .cookies.userKeyCookie = "userKey" instructs
our http protocol implementation to store the value of the cookie userKeyCookie
in subnode userKey for incoming messages, and vice versa for outgoing messages.

In general, our http extension allows developers to abstract from where correlation
data is encoded when programming a service behaviour. Instead of using a cookie, the
web user interface may also send the value for a correlation variable in other ways, e.g.,
through a querystring (enabling process-aware hyperlinks), a JSON or XML subnode,
or an element in an HTML form encoding. Our extension transparently support these
different methods without requiring changes in the behaviour of a service.

5.2 Multiparty Sessions

As far as binary sessions are concerned, there is not much difference between stan-
dard session identifiers as used, e.g., in PHP, and correlation sets, aside from the fact
that the generation and sending of correlation variables is explicit programmed in Jolie
behaviours. However, correlation sets are more expressive when it comes to provid-
ing (i) compound session identifier based on multiple values, as in BPEL [12], and (ii)
multiple identifiers for the same process. We are particularly interested in the second
aspect, since it allows us to model multiparty sessions, i.e., sessions with more than two
participants.

16

www.manaraa.com

Multiparty sessions are useful when considering scenarios with multiple actors that
need to be coordinated to reach a common goal. As an example, we extend our RIS
implementation to deal with a use case from the Pure software by Elsevier [37]. In
Pure, when a user (e.g., a research scientist) adds a publication, a moderator (e.g., the
head of the scientist’s department) has to be notified of the change. Then, the moderator
has to choose whether to approve or reject the newly added publication for confirmation
in the database, after reviewing the data inserted by the user. We show the code for this
multiparty version of our RIS implementation in the following:

inputPort RISInput {
/ * . . . * /
Protocol: http { .cookies.userKeyCookie = "userKey" }
}

outputPort Logger { / * . . . * / }
outputPort Moderator { / * . . . * / }

cset { userKey: addPub.userKey }
cset { modKey: approve.modKey reject.modKey }

define checkCredentials { / * . . . * / }
define updateDB { / * . . . * / }

main
{

login(cred)(r) {
checkCredentials;
r.userKey = csets.userKey = new

};
addPub(pub);
noti.bibtex = pub.bibtex;
noti.modKey = csets.modKey = new;
{ log@Logger(pub.bibtex) | notify@Moderator(noti) };
[approve()] {

log@Logger("Accepted " + pub.bibtex);
updateDB

}
[reject()] {

log@Logger("Rejected " + pub.bibtex)
}

}

Above, we have added the output ports Logger, an external service that maintains a
log of actions that we assume the user can read, and Moderator, an external service
playing the role of the moderator in our scenario. We have also added a new correlation
set for variable modKey (moderator key), which we use to track incoming messages

17

www.manaraa.com

from the moderator of a session. The correlation set declares also that the moderator
may use modKey to invoke operations approve and reject. In the behaviour, the
code is unchanged until after we receive an invocation for operation addPub. Now,
after we receive a request for operation addPub, we prepare a notification noti for
the moderator containing (i) the descriptor of the publication (we assume that it is given
by the user in BibTeX format), and (ii) the moderation key modKey (which is instan-
tiated as a fresh value with the keyword new). Then we use the parallel construct of
Jolie to concurrently send a message to, respectively, the Logger on operation log
(to log the user’s request) and the Moderator on operation notify (to notify the
moderator of the user’s request). The process now enters into an input choice on op-
erations approve and reject, which can be invoked only by the moderator; this is
because the correlation set declaration of variable modKey requires it to be present for
invocations of these operations, and we sent the value of modKey only to the moder-
ator. If approve is invoked, then we log the approval and we update the database of
publications. Otherwise, if reject is invoked, we log the rejection only.

6 Layering

In the previous sections, we focused separately on how to use our extension of Jolie
to program web servers (§ 4) and structured process-aware sessions (§ 5). Typically, a
real-world web architecture has to deal with both aspects. In this section, we show how
they can be combined in our context by building multi-layered architectures.

6.1 Aggregation

A simple way of designing a service that serves content and provides process-aware ses-
sions is to combine the respective operations in the same behaviour as an input choice.
Consider the following code:

/ * . . . * /
main
{

[get(req)(resp) { / * . . . * / }] { nullProcess }
[login(cred)(r) { / * . . . * / }] { / * . . . * / }

}

Above, we assume that the ports and correlation sets are configured by merging the
configurations found in Example 6 and the RIS implementation in § 5.2. Then, opera-
tion get would serve HTML and JavaScript files to clients, which could also invoke
operation login to access the behaviour of the RIS.

While combining the code for a web server with that of sessions with complex
structures as done above is simple, in the long term it also leads to code that is hard to
maintain due to poor separation of concerns: all concerns are mixed in the same service.
Ideally, separate concerns should be addressed by separate services. This methodology,
however, raises the question of how services addressing separate concerns can be com-
posed together as a single system that clients can access without knowing the inner

18

www.manaraa.com

Fig. 3: Architecture of the RIS scenario.

complexity of the system. We tackle this issue by integrating our http protocol imple-
mentation with the notion of service aggregation found in Jolie [21, 11].

Aggregation is a Jolie primitive that allows a service to expose the interfaces of other
services on one of its input ports, in addition to its own interfaces. In the remainder, we
refer to the service using aggregation as aggregator and to the services it aggregates
as aggregated services. The semantics of aggregation is a simple generalisation of the
mechanism used in proxy services: when a message from the network reaches an ag-
gregator, the aggregator checks whether the message is for an operation in (i) one of
its own interfaces or (ii) the interfaces of an aggregated service. In the first case, the
message is given to the behaviour of the aggregator; in the second case, the aggregator
forwards the message to the aggregated service providing the operation requested in the
message.

Using aggregation in combination with our http protocol we can easily build a
multi-layered web architecture for our RIS scenario, where services communicate us-
ing different protocols as needed. We depict the architecture in Figure 3, where circles
represent services, rectangles represent the interfaces exposed by services, full arrows
represent dependencies from actors (users or services) to services, and dashed arrows
represent aggregations; each arrow is annotated with the protocol used for communi-
cations. We comment the architecture. Users can access the web server using a web
browser, through the http protocol. Requests for files, intended to be for the user in-
terface (e.g., HTML pages), are handled directly by the web server through operation
get. Instead, invocations of operations login and addPub are forwarded to the RIS
by aggregation. The web server and the RIS communicate using the sodep protocol,
for performance (sodep is a binary protocol). As in § 5.2, the RIS uses an additional
service, Moderator, to decide whether publications should be accepted into the system.
The RIS and the Moderator services communicate using the soap protocol. Below, we
exemplify how our architecture can be implemented. We assume that the Moderator
service is externally provided, and focus instead on the web server and the RIS.

Web server. The code of the web server follows:

/ * . . . * /

outputPort RIS {
Location: "socket://www.ris-example.com:8090/"

19

www.manaraa.com

Protocol: sodep
Interfaces: RISIface
}

inputPort WebServerInput {
Location: "socket://www.webserver-example.com:80/"
Protocol: http {

.default.get = "get";

.cookies.userKeyCookie = "userKey"
/ * . . . * /

}
Interfaces: GetIface
Aggregates: RIS
}

main {
get(req)(resp) {

/ * . . . * /
readFile@File(req.operation)(resp)

}
}

Our web server implements only the operation get, which serves static files to clients.
It also aggregates the RIS by using the aggregation instruction Aggregates:RIS in
its input port, where RIS is an output port pointing to the RIS. Therefore, all invocations
from users for the operations offered by the RIS will be automatically forwarded to the
latter. Observe that output port RIS uses the sodep protocol: our implementation auto-
matically takes care of translating incoming HTTP messages from users destined to the
RIS into binary sodep messages. In general, the programmer does not need to worry
about data format transformations in our extension of the Jolie language: messages are
implicitly converted to/from the HTTP format as needed.

RIS (Research Information Service). The code for the RIS is the same as that shown in
§ 5.2, with the exception that we now use sodep as communication protocol and that
we removed the usage of the external service Logger for simplicity:

inputPort RISInput {
Location: "socket://www.ris-example.com:8090/"
Protocol: sodep
Interfaces: RISIface
}

outputPort Moderator {
Location: "socket://www.moderator-example.com:8080/"
Protocol: soap
Interfaces: ModeratorIface
}

20

www.manaraa.com

cset { userKey: addPub.userKey }
cset { modKey: approve.modKey reject.modKey }

define checkCredentials { / * . . . * / }
define updateDB { / * . . . * / }

main
{

login(cred)(r) {
checkCredentials;
r.userKey = csets.userKey = new

};
addPub(pub);
noti.bibtex = pub.bibtex;
noti.modKey = csets.modKey = new;
notify@Moderator(noti);
[approve()] {

updateDB
}
[reject()] {

/ * . . . * /
}

}

6.2 Evolvability

Implementing multi-layered web architectures using our approach, i.e., combining http
with aggregation, results in systems that are robust wrt future modifications, or their
evolution. We distinguish between vertical and horizontal modifications, which respec-
tively represent modifications that influence an existing chain of aggregations or new
ones.

A vertical modification is a modification of an interface aggregated by another ser-
vice. In our example, changing the code of the RIS to add, remove, or change the
type of an operation in interface RISIface would be a vertical modification, be-
cause RISIface is aggregated by the web server. Vertical modifications do not require
any intervention on the rest of the architecture, as aggregation is a parametric mecha-
nism: the web server simply needs to be restarted to read the new definition of interface
RISIface.

Horizontal modifications deal with the addition or removal of operations without
requiring an intervention on the behaviour of existing services. Assume that, as an ex-
ample, we wanted to add the possibility to import publications from the DBLP bib-
liography service to our RIS by offering a new operation called import. We could
implement this new feature by changing the code of the RIS, both its interface and be-
haviour. However, in some scenarios this may not be possible, e.g., the RIS may be a

21

www.manaraa.com

black box to which we do not have access (third-party proprietary code), or the RIS
cannot be modified due to quality or security regulations. We deal with this kind of
situations by developing the new operations we need in a new service, and then by ag-
gregating this service together with the RIS in the web server. The resulting situation
in our example scenario is depicted in Figure 4. The only difference between Figure 4

Fig. 4: Architecture of the RIS scenario with DBLP importer.

and our previous architecture from Figure 3 is the presence of a new service, called Im-
porter, offering operation import; the web server now aggregates Importer together
with the RIS, to make operation import accessible by users through web browsers.
We report the updated code for the web server and the importer.

Web server. For the web server, we simply need to add an output port towards the
importer service and aggregate it in the input port of the server. We report only the code
interested by our changes, the rest remains the same as in § 6.1.

/ * . . . * /

outputPort Importer {
Location: "socket://localhost:8009/"
Protocol: sodep
Interfaces: ImporterIface
}

outputPort RIS { / * . . . * / }

inputPort WebServerInput {
/ * . . . * /
Aggregates: RIS, Importer
}

22

www.manaraa.com

/ * . . . * /

By changing the web server as done above, invocations for operation import will now
be redirected to the importer service.

Observe that, by using aggregation, all the invocations from the web client to the
aggregated services pass through the web server. This implies that our programming
methodology respects the standard Same Origin Policy by design, allowing the web
application run by users to access the aggregated services regardless of where the latter
are located.

Importer service. The code for the importer service follows:

/ * . . . * /

outputPort DBLP {
Location: "socket://dblp.uni-trier.de:80/"
Protocol: http {

.osc.fetchBib.alias = "rec/bib2/%!{dblpKey}.bib"
/ * . . . * /

}
Interfaces: DBLPIface
}

outputPort RIS { / * . . . * / }

inputPort ImporterInput {
Location: "socket://localhost:8009/"
Protocol: sodep
Interfaces: ImporterIface
}

main
{

import(request);

dblpReq.dblpKey = request.dblpKey;
fetchBib@DBLP(dblpReq)(result);

addReq.bibtex = result;
addReq.userKey = request.userKey;

addPub@RIS(addReq)
}

The importer service offers a single operation, import, which takes as input a mes-
sage containing two subnodes: dblpKey, the dblp key of the publication to import

23

www.manaraa.com

from DBLP, and userKey, which must be a valid user key for a session inside of
the RIS. The idea is that a user has to invoke operation login before using operation
import, thus opening a session in the RIS, and that she then invokes import with the
userKey it got as a response from login. After receiving a message for operation
import, the importer service proceeds by invoking the DBLP service to retrieve the
BibTeX record stored therein for the dblp key passed by the user. Finally, after retrieving
the BibTeX record, the importer asks the RIS to add it through operation addPub.

7 Related Work

To the best of our knowledge, our work is the first to propose a unified language for
dealing with the programming of web servers, scripting, and the architecture of service
systems in the web by means of mediator services. We have been deeply inspired by
related work in these areas, described below.

The frameworks most similar to ours are those for modelling business processes,
such as WS-BPEL [12], WS-CDL [13], and YAWL [7]. Differently from our approach,
these tools are integrated with web applications through third-party tools. Some of the
ideas presented in this paper (e.g., the default parameters for implementing web
servers) may be easily applied to WS-BPEL, making our work a potential reference.

Other works offer tools for supporting the development of process-aware web ap-
plications. The papers [38, 39] propose a formally-specified language, implemented in
Java, for defining processes that can transparently access resources on the web using
a fixed set of primitive operations; the language supports similar process structured
as those found in Jolie behaviours, although in our case operations are user-defined.
In [40], the authors present a process-based approach to deal with user actions through
web interfaces using EPML; like Jolie, EPML is formally specified and comes with
an execution engine. JOpera comes with an integration layer for offering REST-based
interfaces to business processes [41]. These solutions are formed by integrating sepa-
rate modules for process modelling, computation, and system integration. In contrast,
our framework addresses all these aspects using the same language. EPML can inte-
grate with other languages to integrate user interfaces with process execution; we are
currently investigating in a similar direction (see § 8, Scaffolding of User Interfaces).

Hop [42, 43] and GWT [30] are programming frameworks that deal with the pro-
gramming of both the user interface and the server-side application logic using a single
codebase, which gets then compiled in the code for the client interface and the services.
Differently, in this paper we do not deal with the generation of client code. Instead, we
developed an integration between existing technologies (HTML, AJAX calls, JSON,
etc.) and our services, by using our http protocol to convert the data structures han-
dled by these technologies to/from those handled by Jolie. This leaves the choice of
which framework to use for implementing the web user interface to the developer. The
client code compiled from GWT projects can be reused with our http extension, which
is able to parse GWT requests. HipHop [44] is an extension of Hop based on the syn-
chronous language Esterel [45], which introduces orchestration primitives to Hop. The
major difference between HipHop and our solution is that behavioural code in Jolie is
kept separated from deployment information, making it reusable in different environ-

24

www.manaraa.com

ments, whereas HipHop code mixes the two aspects (for example, cookies in Hop are
handled in behavioural code).

Another work that shares some of our aims is the Bigwig project, which offers a
language for the programming of session-aware web applications [46]. Our language
for behaviours is more expressive than that of Bigwig, which does not support, e.g., the
programming of processes using multiparty sessions; however, in our setting we obtain
this expressiveness by requiring the programmer to manually handle session identifiers
in processes, whereas in Bigwig these are handled automatically. Bigwig is based on
the Apache web server, whereas our approach is self-contained: web servers, services,
and service mediators (which Bigwig does not handle) are all written in Jolie.

Our default configuration parameters for http allows a service implementation
to catch and reply to invocations for operations that were not known at design time. The
same aspect has been previously theoretically modelled through mobility mechanisms
for names in process calculi, e.g., in [47, 48, 49]. Our approach is less powerful because
these theoretical models elevate the received operation names at the language level: a
service may receive an operation name, store it in a variable, and then use the latter in
(input) and (output) primitives as an operation. This is not possible in our behavioural
language, since operations in input and output statements are statically defined. We
chose not to support this kind of mobility, since it would make the definitions of Jolie in-
terfaces change at runtime. This would break the basic assumption of statically defined
operations used in the formal model and implementation of the Jolie language, which
goes out of the scope of this paper. It would also make Jolie fundamentally different
from other standards for web services, such as WSDL [25], with unclear consequences
on their integration. Static operation names are also used in many formal models for the
verification of concurrent programming languages (e.g., session types [36]), which we
are interested in adopting for Jolie in the future.

8 Discussion and Future Extensions

We discuss some aspects of web programming with Jolie and future extensions related
to the work that we presented in this article.

Performance and Evaluation in Production Environments. We leave a rigorous bench-
marking of our framework as future work. However, preliminary informal tests and ex-
perience in production environments show that the performance of Jolie-based HTTP
services is certainly comparable with that of programs using Servlet applications run-
ning on J2SE, services written in BPEL, or web applications written in other web frame-
works such as PHP or Ruby on Rails. This is not surprising, as these frameworks have
to deal with the transformation of HTTP messages to their own internal data representa-
tion as in our case; the only difference is that Jolie supports also other message formats
than those supported in web technologies.

Our framework has been evaluated in the development of industrial products and is
now used in production systems at italianaSoftware, a software development company
that uses Jolie as reference programming language [50]. For instance, the website of
the company and Marco Polo, a proprietary E-Commerce platform with a codebase of

25

www.manaraa.com

more than 400 services, use the framework and the programming techniques presented
in this paper.

Holystic Approach. The main motivation of this work is to lower the complexity of pro-
gramming web-based systems by offering a unified language to capture their different
aspects. However, the current widespread approach of having a specialised technol-
ogy for each of such aspects may have an advantage when it comes to the required
knowledge to use them, as each technology can be studied in isolation. For example,
the administrator of a web server in a larger system has to learn only how to use the
web server software she uses, abstracting from the other technologies in the rest of the
system (where, e.g., WS-BPEL or ESB technologies may be present).

When dealing with only one aspect of web programming, learning how to use a
specific software to deal with such aspect may be less time consuming than learning the
Jolie language, which is more general. A possible solution for this problem could be
to develop Domain Specific Languages (DSLs), supported by Integrated Development
Environments (IDEs), that are compiled to Jolie code. The idea is that a specific DSL
would deal with one aspect of web programming, while retaining the benefits of having
a single underlying language for the different components of a web system. It is still
uncertain whether this step would really be necessary, for two reasons. The first reason
is that for simple tasks, such as serving static content, we can offer a reference imple-
mentation such as the Leonardo web server in § 4, as an alternative to other standard
implementations such as the Apache Web Server. The second reason is that many web
systems require dealing with multiple aspects of web programming. In those cases, it
can take less time to learn Jolie than learning about the available specific technologies
to cover all the use cases that the work we presented can address; this would amount to
learning, at least, a web server, an orchestration (e.g., WS-BPEL), and a service medi-
ation technologies.

Adoption. How and when should a solution such as that proposed in this paper be
adopted in real-world software projects? We discuss an answer by distinguishing be-
tween two main cases: the development of new systems and the extension of existing
systems.

When dealing with the development of an entirely new web system, Jolie offers
a simple and unified language for dealing with the architectural aspects (layering, de-
ployment), the behavioural aspects (application logic), and the serving of static content
(web servers). Therefore, Jolie is now a candidate for the rapid prototyping of a web
system. Since Jolie integrates with other technologies, starting with our framework does
not imply that the final system must be written entirely in Jolie: different parts may be
refined later either by using Jolie or other technologies (e.g., Java, WS-BPEL).

When dealing with the extension of an existing system, or even the development of
a new system that has to integrate with other existing systems, Jolie can be considered
as a glue framework for bridging services based on different technologies. In particular,
it is convenient to use the simple syntax of Jolie for writing processes that direct the
behaviour of other services in a system. In general, the integration capabilities of Jolie
allow for its introduction in a development team by starting from a single service in a
larger system, which can be used by the team to assess whether Jolie should be adopted

26

www.manaraa.com

in other parts of the system after seeing how it performs. We conjecture that this step-
by-step introduction of web services written in Jolie will be key for its adoption by
expert web developers. We are currently following this development methodology in
some software projects at the University of Southern Denmark, for the improvement of
the web-based tools provided to students and staff.

Since Jolie is a relatively new language, most programmers are still unfamiliar with
it and therefore their training must be taken into account in a project. An advantage of a
unified framework such as ours, though, is that it allows to understand multiple aspects
of web-based systems by learning a single language. With the rise of more complex and
structured web-based systems, we believe that there can be a motivation to learn Jolie
even for developers who are expert in more established technologies.

Reversibility. A common problem in handling the interaction between a web user in-
terface and a business process is that the user may decide to take a step back in the
execution flow (e.g., by pressing the “Back” button). This possibility must be manually
taken into account in the design of the process. We plan to extend Jolie with reversibil-
ity techniques [51], which allow distributed processes to be reversed to previous states
by transparently dealing with the required communications to the involved parties.

Scaffolding of User Interfaces. The explicit structure of processes written in Jolie al-
lows us to statically see the workflow that a user interface should follow when inter-
acting with a Jolie service. We could use this aspect to develop a scaffolding tool for
user interfaces, starting from the process structure of a service. Specifically, given a
behaviour in Jolie, it would be possible to automatically generate a user interface that
follows the communication structure of the behaviour. This would be in line with the
notions of duality formalised in [36, 52].

Behavioural analyses. Since our framework makes the process logic of a web appli-
cation explicit, it would be possible to develop a tool for checking that the invocations
performed by a web user interface written in, e.g., Javascript, match the structure of
their corresponding Jolie service. The techniques presented in [8, 9] may offer useful
first steps towards this aim.

Declarative data validation. Our framework exploits the message data types declared
in the interfaces of a Jolie service to validate the content of incoming messages from
web user interfaces (§ 3.2). We plan to extend this declarative support for data validation
by introducing an assertion language for message types that can check more complex
properties (e.g., integer ranges and regular expressions).

Extensions to other web protocols. Our work lays the foundations for using Jolie as
a fully-fledged language to handle HTTP-based systems. By following the same ap-
proach, it would be possible to develop support for new emerging protocols for the
web, such as WebSockets [53] and SPDY [54].

27

www.manaraa.com

9 Conclusions

We have presented a framework for the programming of process-aware web systems,
where processes are used as a holystic approach to capture the development of the dif-
ferent components of such systems, such as web servers, orchestrators, and service me-
diators. Through examples, we have shown how our solution subsumes useful web de-
sign patterns and how it captures complex scenarios involving, e.g., multiparty sessions
and evolvability. Our http extension is open source and is included in the standard
distribution of Jolie, along with the language additions that we introduced to support
protocol configurations [55, 19]. Remarkably, our integration is seamless, meaning that
existing Jolie code can easily be ported to HTTP by changing only the Protocol part
of its communication ports to http with some configuration parameters. An important
consequence is that the programmer does not need to deal with the differences between
the data formats employed in HTTP messages (form encodings, querystrings, JSON,
etc.), since they are all automatically translated to Jolie data structures. This also means
that all the techniques developed for the verification and execution of Jolie programs
(as the typing system in [24] for correlation sets) can be transparently applied to the
process-aware web application logic written in our framework.

Acknowledgements

The author thanks Claudio Guidi, Saverio Giallorenzo, and the anonymous referees of
the original conference version of this paper for their useful comments and discussions.
This work has been supported by the Danish Council for Independent Research (Tech-
nology and Production), grant n. DFF–4005-00304.

References

1. M. Dumas, W. M. P. van der Aalst, A. H. M. ter Hofstede, Process-Aware Information Sys-
tems: Bridging People and Software Through Process Technology, Wiley, 2005. 1

2. Workflow Patterns, http://www.workflowpatterns.com/. 1
3. W. M. P. van der Aalst, Verification of workflow nets, in: ICATPN, 1997, pp. 407–426. 1
4. C. Guidi, Formalizing languages for Service Oriented Computing, PhD. thesis, University

of Bologna, http://www.cs.unibo.it/pub/TR/UBLCS/2007/2007-07.pdf
(2007). 1, 3

5. A. Lapadula, R. Pugliese, F. Tiezzi, A calculus for orchestration of web services, in: ESOP,
2007, pp. 33–47. 1

6. M. Carbone, F. Montesi, Deadlock-freedom-by-design: multiparty asynchronous global pro-
gramming, in: R. Giacobazzi, R. Cousot (Eds.), The 40th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’13, Rome, Italy - January 23
- 25, 2013, ACM, 2013, pp. 263–274. doi:10.1145/2429069.2429101.
URL http://doi.acm.org/10.1145/2429069.2429101 1

7. W. M. P. van der Aalst, A. H. M. ter Hofstede, Yawl: yet another workflow language, Inf.
Syst. 30 (4) (2005) 245–275. 1, 24

8. R. Hu, D. Kouzapas, O. Pernet, N. Yoshida, K. Honda, Type-safe eventful sessions in java,
in: ECOOP, 2010, pp. 329–353. 1, 27

28

http://www.workflowpatterns.com/
http://www.cs.unibo.it/pub/TR/UBLCS/2007/2007-07.pdf
http://doi.acm.org/10.1145/2429069.2429101
http://doi.acm.org/10.1145/2429069.2429101
http://dx.doi.org/10.1145/2429069.2429101
http://doi.acm.org/10.1145/2429069.2429101

www.manaraa.com

9. S. J. Gay, V. T. Vasconcelos, A. Ravara, N. Gesbert, A. Z. Caldeira, Modular session types
for distributed object-oriented programming, in: POPL, 2010, pp. 299–312. 1, 27

10. K. Honda, A. Mukhamedov, G. Brown, T.-C. Chen, N. Yoshida, Scribbling interactions with
a formal foundation, in: ICDCIT, Vol. 6536 of LNCS, Springer, 2011, pp. 55–75. 1

11. F. Montesi, C. Guidi, G. Zavattaro, Service-oriented programming with jolie, in: Web Ser-
vices Foundations, 2014, pp. 81–107. doi:10.1007/978-1-4614-7518-7_4.
URL http://dx.doi.org/10.1007/978-1-4614-7518-7_4 1, 2, 3, 19

12. OASIS, Web Services Business Process Execution Language, http://docs.
oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html. 1, 2, 3, 4, 12, 16, 24

13. W3C WS-CDL Working Group, Web services choreography description language version
1.0, http://www.w3.org/TR/ws-cdl-10/ (2004). 1, 24

14. Business Process Model and Notation, http://www.omg.org/spec/BPMN/2.0/. 1
15. R. Lucchi, M. Mazzara, A pi-calculus based semantics for WS-BPEL, J. Log. Algebr. Pro-

gram. 70 (1) (2007) 96–118. doi:10.1016/j.jlap.2006.05.007.
URL http://dx.doi.org/10.1016/j.jlap.2006.05.007 1

16. W. M. P. van der Aalst, The application of petri nets to workflow management, Jour-
nal of Circuits, Systems, and Computers 8 (1) (1998) 21–66. doi:10.1142/
S0218126698000043.
URL http://dx.doi.org/10.1142/S0218126698000043 1

17. J. L. Peterson, Petri nets, ACM Comput. Surv. 9 (3) (1977) 223–252. doi:10.1145/
356698.356702.
URL http://doi.acm.org/10.1145/356698.356702 1

18. D. A. Chappell, Enterprise Service Bus - Theory in practice, O’Reilly, 2004. 2
19. Jolie, Programming Language, http://www.jolie-lang.org/. 2, 3, 6, 10, 28
20. K. Honda, N. Yoshida, M. Carbone, Multiparty asynchronous session types, in: POPL, Vol.

43(1), ACM, 2008, pp. 273–284. 3
21. F. Montesi, Jolie: a Service-oriented Programming Language, Master’s thesis, University of

Bologna, Department of Computer Science (2010). 3, 5, 6, 7, 9, 19
22. M. D. Preda, M. Gabbrielli, C. Guidi, J. Mauro, F. Montesi, Interface-based service compo-

sition with aggregation, in: ESOCC, 2012, pp. 48–63. 3
23. F. Montesi, C. Guidi, G. Zavattaro, Composing Services with JOLIE, in: ECOWS, 2007, pp.

13–22. 3
24. F. Montesi, M. Carbone, Programming services with correlation sets, in: ICSOC, 2011, pp.

125–141. 3, 15, 28
25. Web Services Description Language, http://www.w3.org/TR/wsdl. 4, 25
26. F. Montesi, C. Guidi, I. Lanese, G. Zavattaro, Dynamic Fault Handling Mechanisms for

Service-Oriented Applications, in: ECOWS, 2008, pp. 225–234. 4
27. SOAP Specifications, http://www.w3.org/TR/soap/. 6
28. XML-RPC, http://www.xmlrpc.com/. 6
29. JavaScript Object Notation, http://www.json.org/. 8
30. Google Web Toolkit, http://code.google.com/webtoolkit/. 8, 24
31. The jQuery Foundation, jQuery, http://www.jquery.com/. 10
32. University of Trier and Schloss Dagstuhl, dblp: computer science bibliography, http://

www.jquery.com/. 11
33. B. W. Kernighan, D. Ritchie, The C Programming Language, Prentice-Hall, 1978. 11
34. F. Montesi, DBLP Tools, http://www.fabriziomontesi.com/dblp/. 12
35. Leonardo Web Server, http://www.sourceforge.net/projects/leonardo/.

13
36. K. Honda, V. Vasconcelos, M. Kubo, Language primitives and type disciplines for structured

communication-based programming, in: ESOP’98, Vol. 1381 of LNCS, Springer-Verlag,
Heidelberg, Germany, 1998, pp. 22–138. 15, 25, 27

29

http://dx.doi.org/10.1007/978-1-4614-7518-7_4
http://dx.doi.org/10.1007/978-1-4614-7518-7_4
http://dx.doi.org/10.1007/978-1-4614-7518-7_4
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html
http://www.omg.org/spec/BPMN/2.0/
http://dx.doi.org/10.1016/j.jlap.2006.05.007
http://dx.doi.org/10.1016/j.jlap.2006.05.007
http://dx.doi.org/10.1016/j.jlap.2006.05.007
http://dx.doi.org/10.1142/S0218126698000043
http://dx.doi.org/10.1142/S0218126698000043
http://dx.doi.org/10.1142/S0218126698000043
http://dx.doi.org/10.1142/S0218126698000043
http://doi.acm.org/10.1145/356698.356702
http://dx.doi.org/10.1145/356698.356702
http://dx.doi.org/10.1145/356698.356702
http://doi.acm.org/10.1145/356698.356702
http://www.jolie-lang.org/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/soap/
http://www.xmlrpc.com/
http://www.json.org/
http://code.google.com/webtoolkit/
http://www.jquery.com/
http://www.jquery.com/
http://www.jquery.com/
http://www.fabriziomontesi.com/dblp/
http://www.sourceforge.net/projects/leonardo/

www.manaraa.com

37. Elsevier, Pure, http://www.elsevier.com/online-tools/
research-intelligence/products-and-services/pure. 17

38. M. Bravetti, File managing and program execution in web operating systems, CoRR
abs/1005.5045.
URL http://arxiv.org/abs/1005.5045 24

39. M. Bravetti, Formalizing restful services and web-os middleware, in: Web Services and For-
mal Methods - 10th International Workshop, WS-FM 2013, Beijing, China, August 2013,
Revised Selected Papers, 2013, pp. 48–68. doi:10.1007/978-3-319-08260-8_4.
URL http://dx.doi.org/10.1007/978-3-319-08260-8_4 24

40. D. Rossi, E. Turrini, Designing and architecting process-aware web applications with epml,
in: SAC, 2008, pp. 2409–2414. 24

41. C. Pautasso, E. Wilde, Push-enabling restful business processes, in: ICSOC, 2011, pp. 32–46.
24

42. M. Serrano, E. Gallesio, F. Loitsch, Hop: a language for programming the web 2.0, in: OOP-
SLA Companion, 2006, pp. 975–985. 24

43. G. Boudol, Z. Luo, T. Rezk, M. Serrano, Reasoning about web applications: An operational
semantics for hop, ACM Trans. Program. Lang. Syst. 34 (2) (2012) 10. 24

44. G. Berry, M. Serrano, Hop and hiphop: Multitier web orchestration, in: Distributed
Computing and Internet Technology - 10th International Conference, ICDCIT 2014,
Bhubaneswar, India, February 6-9, 2014. Proceedings, 2014, pp. 1–13. doi:10.1007/
978-3-319-04483-5_1.
URL http://dx.doi.org/10.1007/978-3-319-04483-5_1 24

45. G. Berry, The foundations of esterel, in: Proof, Language, and Interaction, Essays in Honour
of Robin Milner, 2000, pp. 425–454. 24

46. C. Brabrand, A. Møller, M. I. Schwartzbach, The ¡Bigwig¿ Project, ACM Trans. Internet
Technol. 2 (2) (2002) 79–114. doi:10.1145/514183.514184.
URL http://doi.acm.org/10.1145/514183.514184 25

47. R. Milner, J. Parrow, D. Walker, A calculus of mobile processes, I and II, Information and
Computation 100 (1) (1992) 1–40,41–77. 25

48. D. Sangiorgi, D. Walker, The π-calculus: a Theory of Mobile Processes, Cambridge Univer-
sity Press, 2001. 25

49. C. Guidi, R. Lucchi, Formalizing mobility in service oriented computing, JSW 2 (1) (2007)
1–13. 25

50. italianaSoftware s.r.l., http://www.italianasoftware.com/. 25
51. I. Lanese, C. A. Mezzina, J.-B. Stefani, Reversing higher-order pi, in: CONCUR, 2010, pp.

478–493. 27
52. D. Hirschkoff, J.-M. Madiot, D. Sangiorgi, Duality and i/o-types in the -calculus, in: CON-

CUR, 2012, pp. 302–316. 27
53. IETF, WebSocket protocol, http://tools.ietf.org/html/rfc6455. 27
54. Google SPDY, https://developers.google.com/speed/spdy/. 27
55. Jolie HTTP extension, https://jolie.svn.sourceforge.net/svnroot/

jolie/trunk/extensions/http. 28

30

http://www.elsevier.com/online-tools/research-intelligence/products-and-services/pure
http://www.elsevier.com/online-tools/research-intelligence/products-and-services/pure
http://arxiv.org/abs/1005.5045
http://arxiv.org/abs/1005.5045
http://dx.doi.org/10.1007/978-3-319-08260-8_4
http://dx.doi.org/10.1007/978-3-319-08260-8_4
http://dx.doi.org/10.1007/978-3-319-08260-8_4
http://dx.doi.org/10.1007/978-3-319-04483-5_1
http://dx.doi.org/10.1007/978-3-319-04483-5_1
http://dx.doi.org/10.1007/978-3-319-04483-5_1
http://dx.doi.org/10.1007/978-3-319-04483-5_1
http://doi.acm.org/10.1145/514183.514184
http://dx.doi.org/10.1145/514183.514184
http://doi.acm.org/10.1145/514183.514184
http://www.italianasoftware.com/
http://tools.ietf.org/html/rfc6455
https://developers.google.com/speed/spdy/
https://jolie.svn.sourceforge.net/svnroot/jolie/trunk/extensions/http
https://jolie.svn.sourceforge.net/svnroot/jolie/trunk/extensions/http

	Process-aware web programming with Jolie

